
Representation of solutlons of the Green type for equations of shells 1107 

7. Chernyshev, G. N., Asymptotic method in the theory of shells (concentrated 
loads). Proceedings of VI All-Union Conference on the Theory of Shells and Plates, 

Baku, 1966. M., “Nauka”, 1966. 
Translated by B. D. 

AN ALGORITHM OF THE SOLUTION OF NONLINEAR 

BOUNDARY VALUE PROBLEMS 

PMM Vol. 32, Np6, 1968, pp. 1089-1092 

N. V. VALISHVILI 
(Moscow) 

(Received June 10. 1968) 

Numerous problems of the theory of shells involve the solution of nonlinear boundary 
value problems [l and 21 and this is often a fairly difficult task. Below we show, that in 
the number of cases numerical solutions of such problems are feasible. 

Let us have the following system of differential equations with given boundary condi- 

tions : dY, (4 1 dz = t,, (Y, (z), 9) 0) 

where 
4 (Y” (9)) = 0 for I = 0, Cp, (Y, (1)) = 0 for 2 - I (2) 

y?l (4 = (n WY, Yn (4). t = (h, . . . . I”) 

4 0-n (9)) = ((h (Y, (W,..., q$l (Y, (0))) 

*a (Y” (i)) I= (*I (Yn (i)),..., 9‘ 0, (i)), P + 8 - n (3) 

Here q. is a parameter, and the type of solution depends on the numerical value of 
this parameter. 

Let us replace some of the conditions given in (3) by conditions formulated in an inte- 

and let us introduce the following aux- 

Considering now the problem in an 
( n + I )-dimensional space, we arrive 
at the problem which was formulated 

Fig. 1 
Solition of the problem (l)-(3) is 

obtained as follows. Keeping q = 90 
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fixed, we assign some values to the following unknown functions at 2 = 0: 

Yp+l (Oh Yp+r (O),..., Yn (0) 0 

Inserting (7) into the first condition of (2). we obtain a system of equations in 

Yl 6% YI (a),...., Yp (0) (8) 

which, provided that definite conditions can be imposed on the function qp, can be solved 

using one of the approximate methods of solution of the systems of nonlinear equations 

r.31. 
Having obtained the values of the functions at I = 0, we can now integrate the system 

(1) using the Runge-Kutta or some other method, to obtain the vector 9, (3; (I)) which 
depends on the initial values assigned to the I unknowns in (7). Choosing these initial 
values so that 9, (Yn (1)) = o (9) 

we obtain the required solution. 

In this manner we have obtained s equations in s unknowns, and their functional 
dependence can be established with the help of the system (1). Although the latter can- 

not be written in an explicit form, we can solve it, using one of the approximate methods. 
Putting 9 = 90-i A9 (10) 

we seek its solution, using 

%I* (0) = y,** (0) + c\9 dY;F) when I = 0 (ii) 

as its first approximation. Here yn l (0) denotes the approximate value of the vector for 

9 = qoof Aq whenO=r,and y,, l * (0) is the value of the vector for q = qo when L = 0 

(in the first step, Formula (11) is used -without its second right-hand side term). 
System (2) yields more accurate values of the unknowns (8) and the remaining steps 

are the same as those for q = qo- 
If the predetermined iteration number K is found to be insufficient to give the required 

accuracy, it means that the first approximation given by (11) was not good enough. This 

could, for example, happen in the case illustrated on the Fig. la. To ensure the conver- 

gence, the increment Aq should now be halved and the process repeated, and this should 

Fig. 2 

be done again, if required, until K 

iterations yield the required accu- 

racy. When the “slow” region has 
been passed, the value of the incre- 
ment Aq should be augmented. 

During the process of computation, 
a check should be kept on the ele- 
ments of the vector (ly, (0)‘bq . 

Should any of these elements begin 
to increase excessively, then another 
fixed parameter should replace q. 

Thus, if the curve (~1 (o), q) has a 
vertical tangent at the point qo (Fig. 
lb), then dyl (0) I dq increases in 
the neighborhood of qo . In this case 
the fixed q should be replaced with 
fixed YI (0) and the latter used as the 
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parameter during the progression along the curve. The case when several components 

of the vector increase simultaneously during the computation, must be considered sepa- 
rately. 

Use of Formula (11) to obtain the 
initial approximation ensures that 

a loop of the type shown on tne Fig. 

lc is bypassed in such a manner, 
that the angle of inclination of the 
tangent to the curve varies continu- 

ously. More complex loops (Fig. Id) 
require the incorporation of the 

Fig. 3 

higher order derivatives in (11). the 
order being related to the multipli- 

city of the point of contact of the 
branches. If singular points of the 
type shown on Fig. le present on the 

curve, then the problem requires 
special attention in the neighborh~d of qa. 

When the curve passes near its other segment as shown on Fig. lf. then the possibility 

arises of a jump from one part of the curve to the other. 
The probability of such a transition diminishes, when (11) is supplemented with higher 

order terms and the inurement in Q is made smaller. 

The solution becomes simpler, if the first set of conditions (2) is linear, or easily solu- 
ble in the unknowns (8). If this is true for the second set of conditions (2). then the inte- 
gration should be performed from E = 1. 

Brief analysis given above does not exhaust all the possibilities and examples can be 
found which might prove difficult to solve by the above methods, but the use of the algo- 
rithm enables us to obtain solutions of problems which are difficult to solve by other 
methods. 

In particular, we have solved (the author together with V, N. Stegnii) the following 
nonlinear system which resulted from considering the equilibrium forms and deformation 

energy of hollow spherical shells 

Y¶ - iOUl = 0, --ya + O.Oly,’ + 0.34/l* = 0 

Y4 - 10, = 0, -& + 0.01 y,* - 0.3&s = 0, for s = 0.f 

A + 0;03yr = rs, B=m=O for-c=jo 

Some of the results are shown on Fig, 2. Arrows on the curves indicate the direction 

of motion when the parameter q varies continuously from zero. We see that the prob- 
lem has several solutions for each fixed P _ Thus, for P = 0.140 the problem has four 
solutions. Fig. 3 shows the graphs of Y:, (s) corresponding to these solutions. Numbers 
accompanying the curves indicate the order in which they were obtained when q was 
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varied continuously from zero. 

BIBLIOGRAPHY 

1. Feodos’ev, V. I., Elastic Elements in Precision Instrument Manufacture. M., 
Oborongiz, 1949. 

2. Vol’mir, A, S., Stability of Deformable Systems. 2nd ed. M., “Nat&a”, 1967. 
3. Demidovich, B. P. and Maron, I. A,, Fundamentals of Numerical Methods. 

M. I Fizmatgiz, 1960. 

Translated by L. K. 

ON THE LOSS OF STABILITY OF THE SHAPE 

OF AN IDEALLY FLEXIBLE STRING 

PMM Vol. 32, Np6, 1968, pp. 1092-1096 

M. A. ZAK 
(Leningrad) 

(Received Aptll 19, 1968) 

The equations of the dynamics of an ideally flexible string were solved relative to the 
curvature and torsion of its shape in [I], and the characteristic wave propagation veloci- 
ties of these parameters were found. A connection between the characteristic velocities 
and the loss of stability of the shape is established herein. which is identified with the 

loss in correctness of formulating problems with initial conditions. 
We understand an ideally flexible string to be a material line which does not resist a 

change in shape, i.e. in curvature C?, and torsion Q,. 

Let the unperturbed motion of the string be characterized by the equations 

Qi” = Rio (3 1) (i = 1.3) 

Here s is the arc coordinate, and i the time. 

Let us give some small deviations Pi0 (s) from the unperturbed values to the curvature 

and torsion by demanding that these deviations satisfy appropriate boundary conditions. 
The perturbed motion of the string then becomes 

n, = Q*@ (t, Q + et (I, I) (i = 1.3) 

In some domain D (0 4; t < +, 0 < t Q tr) let the following inequalities hold 

max j cti - nioj < a, maxje4l<v (11 
Let us consider the string shape unstable in the domain D if 

a+ b>o for Y--. 0. (9) 

Let us consider an arbitrary system of equations with constant coefficients 
n 

N %. 
%i at L+ 3j 

j=l 
‘2 + Crfij) 2 0 (3) 

Let the initial conditions be 
I 

7 o---c 
,?I - i-1 

-l~Si, )_,>O; qjo=O, (i=i,2,...,n#m) for t=fk o6x68l 6) 

Let US assume that the relationships (4) satisfy the boundary conditions of Eq.(3). 


